CLASS 11 MATHS CHAPTER-3 TRIGONOMETRIC FUNCTIONS

Exercise 3.1

Question1. Find the radian measures corresponding to the following degree measures:

(i)25 

(ii)−47 30′

(iii)240

(iv)520

Solution :

(i)
chapter 3-Trigonometric Functions Exercise 3.1

(ii)

 (iii)Class 11 Maths

NCERT Solutions for Class 11 Maths

(iv)

NCERT Solutions for Class 11 Maths

Question2. Find the degree measures corresponding to the following radian measures (Use π=22/7).

(i)11/16

(ii)−4

(iii)5π/3

(iv)7π/6

Solution :

(I)

chapter 3-Trigonometric Functions Exercise 3.1

(ii)

Question3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution :
Number of revolutions in 1 minute = 360

Number of revolutions the wheel makes in 1 minute=360

 Number of revolutions the wheel make in 1
 second=360/60
  =6

In one complete revolution, the wheel turns an angle of 2 π

 radian.

Hence, it will turn an angle of 6 × 2 π =12 π
 radian, in 6

 complete revolutions.

Therefore, the wheel turns an angle of 12 π
 radian in one second

Question4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use π=22/7).

Solution :

We know that,
in a circle of radius r unit, if  an angle  θ  radian at the centre is subtended by an arc of length l unit then.

NCERT Solutions for Class 11 Maths

Question5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Solution :
 

chapter 3-Trigonometric Functions Exercise 3.1

Therefore, the length of the minor arc of the chord is 20 π/ 3cm .

Question6. In the two circles , arcs of the same length subtend angles 60ºand75º at the centre, find the ratio of their radii.

Solution :Ans: Let the radii of the two circles be r1 and r2 . Let an arc of length l1 subtends an angle of 60º at the centre of the circle of radius r1 , whereas let an arc of length l2 subtends an angle of 75o at the centre of the circle of radius r2

 .

Now, we have,

60º= π / 3 radian  and

75º=5π/12

 radian

We know that,

 in a circle of radius r
 unit, if  an angle  θ  radian at the centre is subtended by an arc of length l

 unit then

 θ = l/r

l = r θ

Hence we obtain,                   

l = rπ/ 3

and  l = r25 π / 12

according to the l1=l2

thus we have,

r1 π / 3 π =r25 π 12

  r1=r25 / 4

 r1 / r2 =5 / 4

Hence , the ratio of the radii is 5:4

Question7. Find the angle in radians through which a pendulum swings if its length is 75 cm and the tip describes an arc of length:

(i) 10 cm

(ii) 15 cm

(iii) 21 cm

Solution :
(i) We know that,

 in a circle of radius r
 unit, if  an angle  θ  radian at the centre is subtended by an arc of length l

 unit then

 θ = l / r

 

 Given that r=75cm

And here, l=10cm

Hence substituting the values in the formula,

 θ =10 / 75

 radian

  =215
radian
 .

(ii) Given: length of pendulum r = 75 cm and length of arc l = 15 cm

θ =15 / 75

θ =1 / 5

(iii) Given: length of pendulum r = 75 cm and length of arc l = 21 cm

θ =21 / 75

θ =7 / 25

Exercise 3.2

Question1. Find the values of other five trigonometric functions in cosx = −1/2 , x lies in third quadrant.

Solution :
Given:

cosx = −1/2 ,

sec x = 1/cosx

Substituting the values

 =  1/ (-1/2) = -2

chapter 3-Trigonometric Functions Exercise 3.2
chapter 3-Trigonometric Functions Exercise 3.2

Question2. Find the values of other five trigonometric functions in sinx = 3/5  , x lies in second quadrant.

Solution :
Given:

sinx = 3/5

chapter 3-Trigonometric Functions Exercise 3.2
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question3. Find the values of other five trigonometric functions in cotx = 3/4  , x lies in third quadrant.

Solution :
Given: 

cotx = 3/4

chapter 3-Trigonometric Functions Exercise 3.2
chapter 3-Trigonometric Functions Exercise 3.2

Question4. Find the values of other five trigonometric functions in  secx= 13/5  , lies in fourth quadrant.

Solution :
Given: secx= 13/5  ,

 We can write  it as

cos x = 1 / secx = 1/ (13/5)

= 5 / 13

we know that

sin2 x + cos2 x = 1

sin2 x  = 1 – cos2 x

putting the value

sin2 x = 1 – (5/13)2

sin2 x = ± 12 /13 [4th lies in fourth quadrant]

Now  sinx = -12 /13 

 we can write as

cosec x = 1 /sinx = 1 /(-12/13) = -13/12

so we get

tanx = sin x / cos x =(-12/13)/(5/13) = -12/5

Question5. Find the values of other five trigonometric functions in  tanx= −5/12 , x lies in second quadrant..

Solution :
Given: Here given that,  tan x = -5 / 12

Therefore we have,
cot x = 1/tan x

       =1/(-5/12)

       =-12/5

Now we know that , sec2x – tan2x =1

Therefore we have, sec2x = 1+ tan2x

Substituting  tan x=-5/12

  in the formula, we obtain,

sec2x =1+(-5/12)2

sec2x=1+25 / 144

             =169 / 144

 

   sec x= ± 13/12

Since x
 lies in the 2nd quadrant, the value of secx

 will be negative.

sec x=-13/12

Therefore, cos x = 1/sec x

 

                          = -12/13

 

Now  , tan x = sin x/cos x

 

Therefore, sin x = tan x/cos x

 

 Hence we have, sin x=(-5/12) × (-12/13)

   

                                    =(5/13)

 

 And

cosec x=1/sin x

           =135

Find the values of the trigonometric functions in exercises 6 o 10.

Question6. sin 765

Solution :
Here We know that the values of sinx repeat after an interval of 2π or 360º

Therefore we can write,

sin765º=sin(2 × 360º+45º)

            =sin45º

            =√1/2.

Question7. cosec (−1410).

Solution :
Here We  know that the values of cosec x repeat after an interval of 2 π  or 360º
Therefore we can write,

           cosec(-1410º)=cosec(-1410º+4 × 360º)

                               =cosec(-1410º+1440º)

                               =cosec30º

                               =2
 

Question8. tan 19π/3.

Solution :
Here We know that the values of tan x repeat after an interval of  π  or 180º
Therefore we can write,

tan 19π/ 3=tan6×1/3 π

            =tan(6 π + π/ 3)

            =tan π/ 3

            =√3
    

9. sin (−11π/3)

Solution :
Here We know that the values of sin x repeat after an interval of 2 π  or 360º

Therefore we can write,

sin(-11π / 3)=sin(-11π / 3 + 2 × 2 π )

 

                   =sin( π /3)

                    =√3/2
    

Question10. cot (−15π/4).

Solution :
Here We  know that the values of cot x repeat after an interval of  π  or 180∘
Therefore we can write,

cot(-15 π / 4)=cot(-15 π /4+4 π )

                      =cot π /4

                        =1

Exercise 3.3

Prove that:

Question1. Prove that: sin2 π/6 + cosπ/3 − tanπ/4 = −1/2

chapter 3-Trigonometric Functions Exercise 3.3

Question2. Prove that: 2sin2 π/6  +  cosec7π/6 cos2 π/3 =3/2

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question3. Prove that: cot2 π/6  +  cosec 5π/6  +  3tan2 π/6 = 6

Solution :
L.H.S. = Substituting the values of  cot π / 6, cosec5 π / 6, tan π / 6
on left hand side,


L.H.S .= cot2 π/ 6 + cosec 5π / 6 + 3tan 2π/ 6


=(√3)2+cosec( π – π /6) + 3(1/√3)2
=3+cosec π /6 + 3 × 1/3

Since cosec x repeat its value after an interval of 2 π ,

we have, cosec5 π/ 6  = cosec π / 6
L.H.S =3+2+1=1
=R.H.S.

Hence proved.

Question4. Prove that: 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 =10

Solution :
 

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question5. Find the value of: 

(i) sin75
(ii) tan15

Solution :
(i) sin75 = sin(45∘ + 30) = sin45 cos30 + cos45 sin30

 Since we know that, sin(x+y)=sin x cos y+cos x sin y
Therefore we have,

Sin75º=1 / √2 × √3/2 + 1/√2– 1 / 2

Sin75º=(√3 + 1) /2√2

(ii)

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Prove the following:

Question6.NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question7.NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Solution :
 

chapter 3-Trigonometric Functions Exercise 3.3/image038.png

Question8.NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Solution :

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question9.NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Solution :
 

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question10. Prove the following: sin(n+1)x  sin(n+2)x  +  cos(n+1)x cos(n+2)x = cosx

Solution :We know that , cos(x-y)=cosxcosy+sinxsiny
L.H.S.=sin(n+1)xsin(n+2)x+cos (n+1)x cos (n+2)x

=cos[(n+1)x-(n+2)x]
=cos(-x)
=cosx
=R.H.S.

Question11.NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question12. Prove the following: sin2 6x − sin2 4x = sin 2x sin 10x

Ans.

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question13. Prove the following: cos2 2x − cos2 6x = sin 4x sin 8x

Solution :
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question14. Prove the following: sin2x + 2sin4x + sin6x = 4cos2x sin4x

chapter 3-Trigonometric Functions Exercise 3.3/image074.png

Question15. Prove the following: cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)

Solution :
 

chapter 3-Trigonometric Functions Exercise 3.3/image084.png

Question16. Prove the following:

Solution :
 chapter 3-Trigonometric Functions Exercise 3.3/image092.png

Question17.chapter 3-Trigonometric Functions Exercise 3.3/image095.png

Solution :
chapter 3-Trigonometric Functions Exercise 3.3/image096.png

.

Question18.chapter 3-Trigonometric Functions Exercise 3.3/image099.png

Solution :

chapter 3-Trigonometric Functions Exercise 3.3/image100.png

.

Question19.chapter 3-Trigonometric Functions Exercise 3.3/image103.png

Solution :
 chapter 3-Trigonometric Functions Exercise 3.3/image104.png

.

Question20.chapter 3-Trigonometric Functions Exercise 3.3/image107.png

Solution :
 chapter 3-Trigonometric Functions Exercise 3.3/image108.png

Question21.chapter 3-Trigonometric Functions Exercise 3.3/image112.png

Solution :
 chapter 3-Trigonometric Functions Exercise 3.3/image113.png

Question22. Prove the following: cot x cot 2x − cot 2x cot 3x − cot 3x cot x =1

Solution :
chapter 3-Trigonometric Functions Exercise 3.3/image120.png

Question23.chapter 3-Trigonometric Functions Exercise 3.3/image126.png

chapter 3-Trigonometric Functions Exercise 3.3/image127.png

Question24. Prove the following: cos 4x = 1 − 8sin2 x cos2 x

Ans. L.H.S. = cos 4x

= cos 2 (2x)

= 1 – 2 sin22x

= 1 – 2(2sin x cos x)2

computing we get,

L H S  = 1 – 8sin2xcos2x

           = RHS

Hence proved

Question25. Prove the following: cos6 x = 32cos6 x − 48cosx + 18cos2 x−1

Ans. L.H.S. = cos 6x

= cos 3 (2x)

= 4cos32x – 3cos 2x

= 4[ (2cos2x – 1 )3 – 3(2cos2x-1)]

= L.H.S=4[(2cos2x)3-(1)3-3(2cos2x)]-6cos2x + 3

     =4[(2cos2x)3-(1)3-3(2cos2x)2+3(2cos2x)]-6cos2x+3

     =4[8cos6x-1-12cos4x+6cos2x]-6cos2x+3

     =32cos6x-48cos4x+18cos2x-1= R.H.S.

Exercise 3.4

Find the principal and general solutions of the following equations:

Question1. tan x = √3

Solution :
Given: tan x = √3Here lies in first or third quadrant.

tan x = √3
We know that  tan π/ 3 = √3
and tan(4 π/ 3)=tan( π + π 3)=tan π / 3 = √3
Therefore, the principal solutions are x = π /3
 and 4π / 3
Now, tan x = tan π/ 3
Which implies,
x=nπ + π / 3
where n∈Z
Therefore, the general solution is x=n π + π /3
, where n∈Z .

Question2. Sec x = 2

Solution :
chapter 3-Trigonometric Functions Exercise 3.4

Question3. Cot x = −√3

Solution :

cot x = -√3
 Now we know that  cot π / 6 = √3


And cot( π – π /6) = -cot π/ 6

                 =-3–√
and  cot(2 π – π 6)=-cot π 6

                          =-√3
Therefore we have,

cot5π / 6 = -√3
and cot 11π/ 6=-√3

Therefore, the principal solutions are x=5 π/ 6
 and 11 π /6
Now, cot x = cot5 π/ 6
And we know cot x=1 / tan x

Therefore we have,

tan x = tan5 π / 6

Which implies,

x = n π + 5 π /6
 , where n∈Z


Therefore, the general solution is x=nπ + 5 π /6
 , where n∈Z .

Question4. Cosec x = -2

Solution :
Given: Cosec x = -2

cosec π/6 = 2

and

Therefore, the general solution is x=n π +(-1)7π / 6  ,where n∈Z.

Question5. Find the general solution for each of the following equations: cos 4 x = cos 2 x

Solution :
Given: cos 4 x = cos 2 x

Question6. Find the general solution for each of the following equations: cos 3x + cos x – cos 2x = 0

Solution :
Given: cos 3x + cos x – cos 2x = 0

Question7. Find the general solution for each of the following equations: sin 2x + cos x = 0

Solution :
Given: sin 2x + cos x = 0

Now we know that, sin 2x = 2sin x cos x
Therefore we have,
2sinx  cos x + cos x=0
Which implies,

     cos x(2sin x+1)=0

Therefore we have,

Either cos x=0
 or sin x = -1/2

Hence  we have ,

x = (2n + 1) π /2 , where n ∈ Z

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question8. Find the general solution for each of the following equations: sec2 2x = 1−tan 2x

Solution :
Given: sec2 2x = 1−tan 2x

Now we know that

sec2 2x – tan 2x = 1

Ther for we have ,

sec2 2x = 1− tan 2x

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question9. Find the general solution for each of the following equations: sin x + sin 3x + sin 5x = 0

Solution :
Given: sin x + sin 3x + sin 5x = 0

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
chapter 3-Trigonometric Functions image082.png
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Miscellaneous Exercise

Prove that:

Question1. Prove that: 2cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0

Solution :
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

 0 = R.H.S.

Question2. Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

Solution :
L.H.S. = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x 

chapter 3-Trigonometric Functions Miscellaneous Exercise

Question3. Prove that: (cosx + cosy)+ (sinx − siny)2 = 4cos2 x /2 + y/2

Solution :
L.H.S. = (cosx + cosy)+ (sinx − siny)2

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question4. (cosx − cosy)2 + (sinx − siny)2 = 4sin2 x/2 − y/2

Solution :
L.H.S. = (cosx − cosy)2 + (sinx − siny)2

chapter 3-Trigonometric Functions Miscellaneous Exercise

Question5. Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Solution :
L.H.S. = sinx + sin3x + sin5x + sin7x = (sinx + sin5x) + (sin3x + sin7x)

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Question6.chapter 3-Trigonometric Functions Miscellaneous Exercise

Solution :
 chapter 3-Trigonometric Functions Miscellaneous Exercise

Question7. Prove that: sin 3x + sin 2x − sin x = 4sin x cos x/2 cos3 x/2

Solution :
 chapter 3-Trigonometric Functions Miscellaneous Exercise

Question8 Find sin x/2,cos x/2 and tan x/2 in each of the following:

 tan′x =−4/3,x in quadrant II.

Solution :
chapter 3-Trigonometric Functions Miscellaneous Exercise

Question9. cosx=−1/3,x in quadrant III.

Solution :
 

chapter 3-Trigonometric Functions Miscellaneous Exercise

Question10. sinx=1/4,xin quadrant II.

Solution :chapter 3-Trigonometric Functions Miscellaneous Exercise

chapter 3-Trigonometric Functions Miscellaneous Exercise

Leave a Comment

Your email address will not be published. Required fields are marked *

Get 30% off your first purchase!

X
error: Content is protected !!
Scroll to Top