CLASS 12 MATHS CHAPTER 7-INTEGRALS

Exercise 7.1

Solve The Following Questions.

Find an antiderivative (or integral) of the following functions by the method of inspection in Exercises 1 to 5.


Question 1. sin 2x
Solution :

The anti derivative of sin 2x is a function of x whose derivative is sin 2x.

It is known that,

NCERT Solutions class 12 Maths Integrals

herefore, the anti derivative of sin 2x is -1/2 cos 2x.


Question 2. cos 3x


Solution :

The anti derivative of cos 3x is a function of x whose derivative is cos 3x.

It is known that,

NCERT Solutions class 12 Maths Integrals

Therefore, the anti derivative of cos 3x is 1/3 sin 3x.


Question 3. e2x

Solution :

The anti derivative of e2is the function of x whose derivative is e2x.

It is known that,

chapter 7-Integrals Exercise 7.1

Therefore, the anti derivative of  e2x is 1/2 e2x.


Question 4. (ax + b)2


Solution :

The anti derivative of (ax + b)is the function of whose derivative is (ax + b)2.

It is known that,

NCERT Solutions class 12 Maths Integrals
Question 5. sin 2x – 4 e3x


Solution :

The anti derivative of  sin 2x – 4 e3x is the function of whose derivative is sin 2x – 4 e3x

It is known that,

chapter 7-Integrals Exercise 7.1

Evaluate the following integrals in Exercises 6 to 11.
Question 6.  ∫(4e3x+ 1) dx


Solution :
 NCERT Solutions class 12 Maths Integrals
Question 7. NCERT Solutions class 12 Maths Integrals


Solution :

NCERT Solutions class 12 Maths Integrals

Question 8. NCERT Solutions class 12 Maths Integrals/image044.png


Solution :
NCERT Solutions class 12 Maths Integrals/image044.png

Question 9. NCERT Solutions class 12 Maths Integrals/image049.png


Solution :

NCERT Solutions class 12 Maths Integrals/image049.png

Question 10. 


Solution :


Question 11. NCERT Solutions class 12 Maths Integrals/image058.png


Solution :

NCERT Solutions class 12 Maths Integrals/image058.png

Evaluate the following integrals in Exercises 12 to 16.


Question 12. NCERT Solutions class 12 Maths Integrals/image064.png


Solution :



Question 13. NCERT Solutions class 12 Maths Integrals/image072.png


Solution :

NCERT Solutions class 12 Maths Integrals/image073.png

Question 14. ∫(1 – x)√x dx


Solution : ∫(1 – x)√x dx

NCERT Solutions class 12 Maths Integrals/image080.png

Question 15. NCERT Solutions class 12 Maths Integrals/image086.png


Solution :


NCERT Solutions class 12 Maths Integrals/image086.png

Question 16. NCERT Solutions class 12 Maths Integrals


Solution :
NCERT Solutions class 12 Maths Integrals

NCERT Solutions class 12 Maths Integrals/image094.png


Evaluate the following integrals in Exercises 17 to 20.
Question 17. NCERT Solutions class 12 Maths Integrals/image098.png


Solution :
NCERT Solutions class 12 Maths Integrals/image098.png
 NCERT Solutions class 12 Maths Integrals/image099.png
Question 18.NCERT Solutions class 12 Maths Integrals/image103.png


Solution :
NCERT Solutions class 12 Maths Integrals/image103.png
 NCERT Solutions class 12 Maths Integrals/image104.png
Question 19. NCERT Solutions class 12 Maths Integrals/image107.png


Solution :


NCERT Solutions class 12 Maths Integrals/image107.png

Question 20. NCERT Solutions class 12 Maths Integrals/image114.png


Solution :
NCERT Solutions class 12 Maths Integrals/image114.png
 NCERT Solutions class 12 Maths Integrals/image115.png


Question 21. Choose the correct answer:
The anti derivative of equals.


Solution :
NCERT Solutions class 12 Maths Integrals/image124.png


Therefore, option (C) is correct.


Question 22. Choose the correct answer:


If   such that f(2) = 0 Then f is:


Solution :

It is given that,

NCERT Solutions class 12 Maths Integrals/image137.png

Therefore, option (A) is correct.

Exercise 7.2

Solve The Following Questions.

Integrate the functions in Exercise 1 to 8.


Question 1.


Solution :

Let 1 + x2 = t

∴2x dx = dt
NCERT Solutions class 12 Maths Integrals


Question 2. chapter 7-Integrals Exercise 7.2


Solution :

Let log |x| = t

∴ 1/x dx = dt
chapter 7-Integrals Exercise 7.2
NCERT Solutions class 12 Maths Integrals

Question 3. chapter 7-Integrals Exercise 7.2/image019.png


Solution :
chapter 7-Integrals Exercise 7.2/image020.png

Question 4. sin x ⋅ sin (cos x)

Solution :

sin x ⋅ sin (cos x)

Let cos x = t

∴ −sin x dx = dt
NCERT Solutions class 12 Maths Integrals


Question 5. sin(ax + b) cos(ax + b)


Solution :
chapter 7-Integrals Exercise 7.2/image034.png

Questionc 6. √ax + b


Solution :

Let ax + b = t

⇒ adx = dt

chapter 7-Integrals Exercise 7.2/image042.png

Question 7. x√x + 2


Solution :

Let  (x + 2) = t

∴ dx = dt

chapter 7-Integrals Exercise 7.2/image048.png

Question 8. x√1 + 2x2
Solution :

Let 1 + 2x2 = t

∴ 4xdx = dt

chapter 7-Integrals Exercise 7.2/image059.png


Integrate the functions in Exercise 9 to 17.


Question 9.chapter 7-Integrals Exercise 7.2/image067.png


Solution :
 chapter 7-Integrals Exercise 7.2/image068.png

Question 10.chapter 7-Integrals Exercise 7.2/image079.png


Solution :
 chapter 7-Integrals Exercise 7.2


Question 11.chapter 7-Integrals Exercise 7.2/image090.png


Solution :
chapter 7-Integrals Exercise 7.2/image091.png

Question 12.chapter 7-Integrals Exercise 7.2/image101.png


Solution :

Let x3 – 1 = t

∴ 3x2 dx = dt

chapter 7-Integrals Exercise 7.2/image103.png

Question 13.chapter 7-Integrals Exercise 7.2/image116.png


Solution :

Let 2 + 3x3 = t

∴ 9x2 dx = dt

chapter 7-Integrals Exercise 7.2/image117.png

Question 14. chapter 7-Integrals Exercise 7.2/image126.png
Solution :

Let log x = t

∴ 1/x dx = dt

chapter 7-Integrals Exercise 7.2/image128.png
Question 15. x/9 – 4x2


Solution :

Let 9 – 4x2 =  t

∴ −8x dx = dt

 chapter 7-Integrals Exercise 7.2/image134.png

Question 16. chapter 7-Integrals Exercise 7.2/image143.png


Solution :

Let 2x + 3 = t

∴ 2dx = dt

chapter 7-Integrals Exercise 7.2/image144.png

Question 17. chapter 7-Integrals Exercise 7.2/image148.png
Solution :

Let x2 = t

∴ 2xdx = dt

chapter 7-Integrals Exercise 7.2/image150.png

Integrate the functions in Exercise 18 to 26.


Question 18. chapter 7-Integrals Exercise 7.2/image157.png


Solution :
chapter 7-Integrals Exercise 7.2/image158.png
Question 19.chapter 7-Integrals Exercise 7.2/image165.png


Solution :
chapter 7-Integrals Exercise 7.2/image165.png

Dividing numerator and denominator by ex, we obtain

chapter 7-Integrals Exercise 7.2/image168.png

Question 20. chapter 7-Integrals Exercise 7.2/image177.png
Solution :

chapter 7-Integrals Exercise 7.2/image178.png

Question 21. tan2 (2x – 3)


Solution :
chapter 7-Integrals Exercise 7.2/image189.png

Question 22. sec2 (7 – 4x)


Solution :

Let 7 − 4x = t

∴ −4dx = dt

chapter 7-Integrals Exercise 7.2/image196.png


Question 23. chapter 7-Integrals Exercise 7.2/image188.png


Solution :

chapter 7-Integrals Exercise 7.2
Question 24. chapter 7-Integrals Exercise 7.2/image194.png


Solution :

chapter 7-Integrals Exercise 7.2/image207.png

Question 25. chapter 7-Integrals Exercise 7.2/image198.png


Solution :
chapter 7-Integrals Exercise 7.2/image215.png

Question 26. 


Solution :

Let √x = t

chapter 7-Integrals Exercise 7.2/image227.png


Integrate the functions in Exercise 27 to 37.


Question 27.


Solution :

Let sin 2x = t

chapter 7-Integrals Exercise 7.2/image235.png


Question 28.chapter 7-Integrals Exercise 7.2/image243.png


Solution :

Let 1 + sin x = t

∴ cos x dx = dt

chapter 7-Integrals Exercise 7.2/image245.png

Question 29. cot x log sin x


Solution :

Let log sin x = t

chapter 7-Integrals Exercise 7.2/image256.png
Question 30. sin x/1 + cos x


Solution :

Let 1 + cos x = t

∴ −sin x dx = dt

chapter 7-Integrals Exercise 7.2/image262.png

Question 31.  sin x/(1 + cos x)2


Solution :

Let 1 + cos x = t

∴ −sin x dx = dt

chapter 7-Integrals Exercise 7.2/image269.png

Question 32. 1/1 + cot x
Solution :
 chapter 7-Integrals Exercise 7.2/image274.png


Question 33. 1/1 – tan x


Solution :

chapter 7-Integrals Exercise 7.2/image295.png

Question 34. chapter 7-Integrals Exercise 7.2/image308.png


Solution :
 chapter 7-Integrals Exercise 7.2/image309.png
Question 35. chapter 7-Integrals Exercise 7.2/image319.png


Solution :

Let 1 + log x = t

∴ 1/x dx = dt
chapter 7-Integrals Exercise 7.2/image320.png


Question 36. chapter 7-Integrals Exercise 7.2/image323.png


Solution :

chapter 7-Integrals Exercise 7.2/image324.png

Question 37.chapter 7-Integrals Exercise 7.2/image330.png


Solution :

Let x4 = t

∴ 4x3 dx = dt

chapter 7-Integrals Exercise 7.2


Choose the correct answer in Exercise 38 and 39.


Question 38.  equals


(A) 10x – x10 + C
(B) 10x + x10 + C
(C) (10x – x10)-1 + C
(D) log(10x + x10) + C


Solution :

chapter 7-Integrals Exercise 7.2/image344.png


Therefore, option (D) is correct.
Question 39.equals

(A) tan x + cot x + C
(B) tan x – cot x + C
(C) tan x cot x + C
(D) tan x – cot 2x + C


Solution :

chapter 7-Integrals Exercise 7.2/image353.png

Therefore, option (B) is correct.

Exercise 7.3

Solve The Following Questions.

Find the integrals of the following functions in Exercises 1 to 9.


Question 1. sin2(2x + 5)


Solution :
chapter 7-Integrals Exercise 7.3

Question 2. sin 3x cos4x

Solution :
NCERT Solutions class 12 Maths Integrals/image009.png

Question 3. cos 2x cos 4x cos 6x


Solution :
NCERT Solutions class 12 Maths Integrals/image017.png

Question 4. sin3 (2x + 1)


Solution :
NCERT Solutions class 12 Maths Integrals/image026.png

Question 5. sin3 x cos3 x


Solution :
NCERT Solutions class 12 Maths Integrals/image034.png

Question 6. sin x sin 2x sin 3x


Solution :
NCERT Solutions class 12 Maths Integrals/image044.png

Question 7. sin 4x sin 8x


Solution : It is known that,
sin A . sin B = 12cosA-B-cosA+B

∴∫sin4x sin8x dx=∫12cos4x-8x-cos4x+8xdx

=12∫cos-4x-cos12xdx

=12∫cos4x-cos12xdx

=12sin4x4-sin12x12+C

Question 8. NCERT Solutions class 12 Maths Integrals/image059.png


Solution :
NCERT Solutions class 12 Maths Integrals/image060.png

Question 9. NCERT Solutions class 12 Maths Integrals/image067.png


Solution :
NCERT Solutions class 12 Maths Integrals/image068.png

Find the integrals of the following functions in Exercises 10 to 18.


Question 10. sin4 x


Solution :
NCERT Solutions class 12 Maths Integrals/image076.png


Question 11. cos4 2x


Solution :
NCERT Solutions class 12 Maths Integrals/image088.png

Question 12. 


Solution :
NCERT Solutions class 12 Maths Integrals/image100.png

Question 13. NCERT Solutions class 12 Maths Integrals/image106.png


Solution :
NCERT Solutions class 12 Maths Integrals/image107.png

Question 14. NCERT Solutions class 12 Maths Integrals/image118.png


Solution :
NCERT Solutions class 12 Maths Integrals/image119.png

Question 15. tan3 2x sec2x

Solution :
NCERT Solutions class 12 Maths Integrals/image133.png


Question 16. tan4x


Solution :
NCERT Solutions class 12 Maths Integrals/image146.png

Question 17. NCERT Solutions class 12 Maths Integrals/image157.png


Solution :
NCERT Solutions class 12 Maths Integrals/image158.png

Question 18. NCERT Solutions class 12 Maths Integrals/image165.png


Solution :
NCERT Solutions class 12 Maths Integrals/image166.png

Integrate the following functions in Exercises 19 to 22.
Question 19. NCERT Solutions class 12 Maths Integrals/image171.png


Solution :
NCERT Solutions class 12 Maths Integrals/image174.png
Question 20. NCERT Solutions class 12 Maths Integrals/image188.png


Solution :
 NCERT Solutions class 12 Maths Integrals/image189.png
Question 21. sin−1 (cos x)


Solution :
NCERT Solutions class 12 Maths Integrals
NCERT Solutions class 12 Maths Integrals


Question 22. NCERT Solutions class 12 Maths Integrals/image203.png


Solution :
NCERT Solutions class 12 Maths Integrals/image204.png

Choose the correct answer in Exercise 23 and 24.


Question 23.is equal to:

A. tan x + cot x + C

B. tan x + cosec x + C

C. − tan x + cot x + C

D. tan x + sec x + C


Solution :
NCERT Solutions class 12 Maths Integrals/image214.png


Therefore, option (A) is correct.


Question 24. is equal to:

A. − cot (exx) + C

B. tan (xex) + C

C. tan (ex) + C

D. cot (ex) + C


Solution :
Let I = 

Let exx = t

chapter 7-Integrals Exercise 7.3
Therefore, option (B) is correct.

Exercise 7.4

Solve The Following Questions.

Integrate the following functions in Exercises 1 to 9.


Question 1. 


Solution :

Let x3 = t

∴ 3x2 dx = dt

chapter 7-Integrals Exercise 7.4


Question 2. chapter 7-Integrals Exercise 7.4/image012.png


Solution :

Let 2x = t

∴ 2dx = dt


chapter 7-Integrals Exercise 7.4/image013.png

Question 3. chapter 7-Integrals Exercise 7.4/image018.png


Solution :

Let 2 − t

⇒ −dx = dt
chapter 7-Integrals Exercise 7.4/image019.png

Question 4. chapter 7-Integrals Exercise 7.4/image023.png


Solution :

Let 5x = t

∴ 5dx = dt

chapter 7-Integrals Exercise 7.4/image024.png


Question 5. chapter 7-Integrals Exercise 7.4/image029.png


Solution :
 chapter 7-Integrals Exercise 7.4/image030.png

Question 6. chapter 7-Integrals Exercise 7.4/image040.png


Solution :

Let x3 = t

∴ 3x2 dx = dt

chapter 7-Integrals Exercise 7.4/image041.png


Question 7. chapter 7-Integrals Exercise 7.4/image050.png


Solution :
chapter 7-Integrals Exercise 7.4/image051.png


Question 8. chapter 7-Integrals Exercise 7.4/image065.png


Solution :

Let x3 = t

∴ 3x2 dx = dt

chapter 7-Integrals Exercise 7.4/image067.png


Question 9. chapter 7-Integrals Exercise 7.4/image072.png


Solution :

Let tan x = t

∴ sec2x dx = dt

chapter 7-Integrals Exercise 7.4/image074.png


Integrate the following functions in Exercises 10 to 18.


Question 10. 


Solution :
chapter 7-Integrals Exercise 7.4/image082.png

Question 11. chapter 7-Integrals Exercise 7.4/image087.png


Solution :
chapter 7-Integrals Exercise 7.4/image088.png

Question 12 .chapter 7-Integrals Exercise 7.4/image099.png


Solution :
chapter 7-Integrals Exercise 7.4/image100.png

Question 13. chapter 7-Integrals Exercise 7.4/image109.png


Solution :
chapter 7-Integrals Exercise 7.4/image110.png

Question 14. chapter 7-Integrals Exercise 7.4/image117.png


Solution :
chapter 7-Integrals Exercise 7.4/image118.png

Question 15. chapter 7-Integrals Exercise 7.4/image126.png


Solution :
chapter 7-Integrals Exercise 7.4/image127.png

Question 16. chapter 7-Integrals Exercise 7.4/image137.png


Solution :
chapter 7-Integrals Exercise 7.4/image138.png


Question 17.chapter 7-Integrals Exercise 7.4/image145.png


Solution :
chapter 7-Integrals Exercise 7.4/image146.png

Question 18. chapter 7-Integrals Exercise 7.4/image158.png


Solution :
chapter 7-Integrals Exercise 7.4/image159.png
chapter 7-Integrals Exercise 7.4/image160.png
chapter 7-Integrals Exercise 7.4/image189.png


Integrate the following functions in Exercises 19 to 23.
Question 19. chapter 7-Integrals Exercise 7.4/image190.png


Solution :
chapter 7-Integrals Exercise 7.4/image191.png

chapter 7-Integrals Exercise 7.4/image192.png


Question 20. 


Solution :
chapter 7-Integrals Exercise 7.4/image216.png

chapter 7-Integrals Exercise 7.4/image160.png


Question 21. chapter 7-Integrals Exercise 7.4/image244.png


Solution :
chapter 7-Integrals Exercise 7.4/image245.png

Using equations (2) and (3) in (1), we obtain

chapter 7-Integrals Exercise 7.4/image246.png


Question 22. chapter 7-Integrals Exercise 7.4/image267.png


Solution :
chapter 7-Integrals Exercise 7.4/image268.png
chapter 7-Integrals Exercise 7.4/image288.png


Question 23. chapter 7-Integrals Exercise 7.4/image289.png


Solution :
chapter 7-Integrals Exercise 7.4/image290.png
chapter 7-Integrals Exercise 7.4/image246.png


Choose the correct answer in Exercise 24 and 25.


Question 24.  equals

A. x tan−1 (x + 1) + C

B. tan− 1 (x + 1) + C

C. (x + 1) tan−1 x + C

D. tan−1 x + C


Solution :
chapter 7-Integrals Exercise 7.4/image312.png

Therefore, option (B) is correct.


Question 25.  equals



Solution :
chapter 7-Integrals Exercise 7.4/image319.png

Therefore, option (B) is correct.

Exercise 7.5

Solve The Following Questions.

Integrate the (rational) function in Exercises 1 to 6.


Question 1. 


Solution :
chapter 7-Integrals Exercise 7.5
Question 2. NCERT Solutions class 12 Maths Integrals/image013.png


Solution :
NCERT Solutions class 12 Maths Integrals/image014.png

Question 3. chapter 7-Integrals Exercise 7.5


Solution :
chapter 7-Integrals Exercise 7.5

Question 4. chapter 7-Integrals Exercise 7.5


Solution :
chapter 7-Integrals Exercise 7.5

Question 5.NCERT Solutions class 12 Maths Integrals/image039.png


Solution :
NCERT Solutions class 12 Maths Integrals/image039.png

Question 6. chapter 7-Integrals Exercise 7.5


Solution :

It can be seen that the given integrand is not a proper fraction.

Therefore, on dividing (1 − x2) by x(1 − 2x), we obtain
 NCERT Solutions class 12 Maths Integrals/image051.png
Question7. 


Solution :
NCERT Solutions class 12 Maths Integrals/image069.png
chapter 7-Integrals Exercise 7.5
Question8. NCERT Solutions class 12 Maths Integrals/image082.png


Solution :
NCERT Solutions class 12 Maths Integrals/image082.png

Question9.  NCERT Solutions class 12 Maths Integrals/image098.png


Solution :
NCERT Solutions class 12 Maths Integrals/image098.png

Question10. NCERT Solutions class 12 Maths Integrals/image113.png


Solution :
NCERT Solutions class 12 Maths Integrals/image113.png

Question11. NCERT Solutions class 12 Maths Integrals/image127.png


Solution :
NCERT Solutions class 12 Maths Integrals/image127.png

Question12. NCERT Solutions class 12 Maths Integrals/image140.png


Solution :

It can be seen that the given integrand is not a proper fraction.

Therefore, on dividing (x3 + x + 1) by x2 − 1, we obtain


NCERT Solutions class 12 Maths Integrals/image140.png

Integrate the following function in Exercises 13 to 17.


Question13. NCERT Solutions class 12 Maths Integrals/image152.png


Solution :
NCERT Solutions class 12 Maths Integrals/image152.png

Question 14. NCERT Solutions class 12 Maths Integrals/image164.png


Solution :
NCERT Solutions class 12 Maths Integrals/image165.png

Question15. NCERT Solutions class 12 Maths Integrals/image179.png


Solution :
NCERT Solutions class 12 Maths Integrals/image179.png

Question16. NCERT Solutions class 12 Maths Integrals/image190.png  [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Solution :

NCERT Solutions class 12 Maths Integrals/image190.png

Multiplying numerator and denominator by x− 1, we obtain
NCERT Solutions class 12 Maths Integrals/image191.png


Question17.  [Hint: Put sin x = t]


Solution :


Integrate the following function in Exercises 18 to 21.


Question18. 


Solution :

Equating the coefficients of x3x2x, and constant term, we obtain

A + C = 0

B + D = 4

4A + 3C = 0

4B + 3D = 10

On solving these equations, we obtain

A = 0, B = −2, C = 0, and D = 6

 

Question19. 


Solution :


Question20. 


Solution :

NCERT Solutions class 12 Maths Integrals/image251.png

Multiplying numerator and denominator by x3, we obtain



Question21.  [Hint: Put ex = t]


Solution :

 

Choose the correct answer in each of the Exercise 22 and 23.


Question22. equals:


Solution :



Therefore, option (B) is correct.


Question23. equals:



Solution :
 


Therefore, option (A) is correct.

Exercise 7.6

Solve The Following Questions.

Integrate the functions in Exercises 1 to 8.


Question 1. x sin x

Solution : Let I =  ∫ x sin x dx

Taking x as first function and sin x as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals

Question 2. x sin 3x
Solution :
Let I = ∫ x sin 3x dx

Taking x as first function and sin 3x as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals/image010.png

Question 3. xex
Solution :

Let  I = ∫ xex dx

Taking x2 as first function and ex as second function and integrating by parts, we obtain
NCERT Solutions class 12 Maths Integrals/image017.png

Again integrating by parts, we obtain
 NCERT Solutions class 12 Maths Integrals/image018.png
Question 4. x logx

Solution : Let  I = ∫ x logx dx

Taking log x as first function and x as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals
Question 5. x log 2x

Solution : Let  I = ∫ x log 2x dx

Taking log 2x as first function and x as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals/image035.png
Question 6. xlog x

Solution : Let  I = ∫ xlog x dx

Taking log x as first function and x2 as second function and integrating by parts, we obtain
NCERT Solutions class 12 Maths Integrals/image043.png

Question 7. x sin-1 x
Solution :
Let I = ∫ x sin-1 x

Taking sin-1 x as first function and x as second function and integrating by parts, we obtain
NCERT Solutions class 12 Maths Integrals/image052.png
Question 8. x tan-1 x
Solution :
Let I = ∫ x tan-1 x

Taking tan-1 x as first function and x as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals

Integrate the functions in Exercises 9 to 15.
Question 9. x cos-1 x
Solution :
Let I = ∫ x cos-1 x

Taking cos−1 x as first function and x as second function and integrating by parts, we obtain

chapter 7-Integrals Exercise 7.6
Question 10. NCERT Solutions class 12 Maths Integrals/image091.png
Solution :
Let I = ∫ .1 dx

Taking  as first function and 1 as second function and integrating by parts, we obtain

chapter 7-Integrals Exercise 7.6
Question 11. NCERT Solutions class 12 Maths Integrals/image100.png
Solution :
Let  NCERT Solutions class 12 Maths Integrals/image101.png

NCERT Solutions class 12 Maths Integrals/image076.png

Taking cos−1 x as first function and NCERT Solutions class 12 Maths Integrals/image076.png as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals/image076.png
Question 12. x sec2 x
Solution : Let I = ∫ x sec2 x dx

Taking x as first function and sec2x as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals/image113.png
Question 13. tan-1 x

Solution :
Let I = ∫ tan-1 x dx

Taking tan-1 x as first function and 1 as second function and integrating by parts, we obtain

chapter 7-Integrals Exercise 7.6
Question 14. x (log x)2
Solution :
Let I = ∫ x (log x)dx

Taking (log x)2 as first function and x as second function and integrating by parts, we obtain
NCERT Solutions class 12 Maths Integrals/image128.png
Question 15. (x2 + 1) log x

Solution :
NCERT Solutions class 12 Maths Integrals/image137.png
Integrate the functions in Exercises 16 to 22.
Question 16. NCERT Solutions class 12 Maths Integrals/image144.png
Solution :
NCERT Solutions class 12 Maths Integrals/image145.png
Question 17.NCERT Solutions class 12 Maths Integrals/image152.png
Solution :

NCERT Solutions class 12 Maths Integrals/image153.png

Question 18. NCERT Solutions class 12 Maths Integrals/image160.png
Solution :
NCERT Solutions class 12 Maths Integrals/image161.png
Question 19. 
Solution :
NCERT Solutions class 12 Maths Integrals/image170.png
Question 20. NCERT Solutions class 12 Maths Integrals/image176.png
Solution :
NCERT Solutions class 12 Maths Integrals/image177.png


Question 21. e2x sin x
Solution :
Let I = ∫ e2x sin x

Integrating by parts, we obtain

chapter 7-Integrals Exercise 7.6
Question 22.NCERT Solutions class 12 Maths Integrals/image195.png
Solution :

NCERT Solutions class 12 Maths Integrals/image196.png
Choose the correct answer in Exercise 23 and 24.
Question 23. equals to

Solution :
Let I = 
NCERT Solutions class 12 Maths Integrals/image214.png
Therefore, option (A) is correct.
Question 24. equals:
(A)  excos x + C
(B) esec x + C
(C) ex sin x + C
(D) etan x + C
Solution :
NCERT Solutions class 12 Maths Integrals/image226.png
Therefore, option (B) is correct.

Exercise 7.7

Solve The Following Questions.

Integrate the functions in Exercises 1 to 9.

Question1.  chapter 7-Integrals Exercise 7.7   

Solution :
chapter 7-Integrals Exercise 7.7

Question2.    

Solution :
chapter 7-Integrals Exercise 7.7/image008.png

Question3. chapter 7-Integrals Exercise 7.7/image013.png

Solution :
chapter 7-Integrals Exercise 7.7/image014.png

Question4.    

Solution :
chapter 7-Integrals Exercise 7.7/image021.png

Question5. chapter 7-Integrals Exercise 7.7/image027.png   

Solution :
chapter 7-Integrals Exercise 7.7/image028.png

Question6. chapter 7-Integrals Exercise 7.7/image036.png

Solution :
chapter 7-Integrals Exercise 7.7/image037.png

Question7. chapter 7-Integrals Exercise 7.7/image042.png   

Solution :
chapter 7-Integrals Exercise 7.7

Question8. NCERT Solutions class 12 Maths Integrals   

Solution :
NCERT Solutions class 12 Maths Integrals

Question9. NCERT Solutions class 12 Maths Integrals

Solution :
chapter 7-Integrals Exercise 7.7/image058.png

Choose the correct answer in Exercise 10 to 11.

Question10.  is equal to:

chapter 7-Integrals Exercise 7.7/image066.png

Solution :
chapter 7-Integrals Exercise 7.7/image065.png

Therefore, option (A) is correct.

Question11. chapter 7-Integrals Exercise 7.7/image073.jpgis equal to:

NCERT Solutions class 12 Maths Integrals
NCERT Solutions class 12 Maths Integrals

Therefore, option (D) is correct.

Exercise 7.8

Solve The Following Questions.

Evaluate the following definite integrals as limit of sums:

Question1.      

Solution :
It is know that 

NCERT Solutions class 12 Maths Integrals/05.png

Question2. NCERT Solutions class 12 Maths Integrals/19.png   

Solution :
Let I = NCERT Solutions class 12 Maths Integrals/19.png

It is know that

NCERT Solutions class 12 Maths Integrals/02.png

Question3. NCERT Solutions class 12 Maths Integrals/30.png

Solution :
We know that

NCERT Solutions class 12 Maths Integrals/02.png

Question4. NCERT Solutions class 12 Maths Integrals/41.png   

Solution :


We know that

NCERT Solutions class 12 Maths Integrals/02.png
chapter 7-Integrals Exercise 7.8

From equations (2) and (3), we obtain

NCERT Solutions class 12 Maths Integrals/50.png

Question5. NCERT Solutions class 12 Maths Integrals/51.png   

Solution : Let I = 
We know that

NCERT Solutions class 12 Maths Integrals/02.png

Question6. NCERT Solutions class 12 Maths Integrals/61.png

Solution :
We know that

NCERT Solutions class 12 Maths Integrals/02.png

Exercise 7.9

Solve The Following Questions.

Evaluate the definite integrals in Exercises 1 to 11.
Question1. 
Solution :
NCERT Solutions class 12 Maths Integrals/01.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths Integrals/03.png
Question2. chapter 7-Integrals Exercise 7.8
Solution :
chapter 7-Integrals Exercise 7.8

By second fundamental theorem of calculus, we obtain

I = F(3) – F(2)
= log|3| – log|2| = log 3/2


Question3. NCERT Solutions class 12 Maths Integrals/12.png
Solution :
NCERT Solutions class 12 Maths Integrals/12.png

By second fundamental theorem of calculus, we obtain

 NCERT Solutions class 12 Maths Integrals
Question4. NCERT Solutions class 12 Maths Integrals/28.png
Solution :
NCERT Solutions class 12 Maths Integrals/22.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths Integrals/24.png
Question5. 
Solution :
NCERT Solutions class 12 Maths Integrals/29.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths /0.png

Question6. 
Solution :

NCERT Solutions class 12 Maths /5.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths /5.png
Question7. NCERT Solutions class 12 Maths Integrals
Solution :
NCERT Solutions class 12 Maths /7.png

By second fundamental theorem of calculus, we obtain
NCERT Solutions class 12 Maths /5.png
Question8. NCERT Solutions class 12 /0.png
Solution :
NCERT Solutions class 12 Maths Integrals/44.png

By second fundamental theorem of calculus, we obtain
NCERT Solutions class 12 Maths Integrals
Question9. NCERT Solutions class 12 /0.png
Solution :
NCERT Solutions class 12 /0.png

By second fundamental theorem of calculus, we obtain
NCERT Solutions class 12 /1.png
Question10. NCERT Solutions class 12 /5.png
Solution :
NCERT Solutions class 12 /5.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 /6.png

Question11. NCERT Solutions class 12 Maths Integrals
Solution :
NCERT Solutions class 12 Maths Integrals

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths Integrals/62.png


Evaluate the definite integrals in Exercises 12 to 20.
Question12. NCERT Solutions class 12 Maths Integrals
Solution :
NCERT Solutions class 12 Maths Integrals

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths Exercise 7.9/0.png
Question13. NCERT Solutions class 12 Maths Exercise 7.9/5.png
Solution :
NCERT Solutions class 12 Maths Exercise 7.9/6.png

By second fundamental theorem of calculus, we obtain
NCERT Solutions class 12 Maths Exercise 7.9/8.png
Question14. NCERT Solutions class 12 /2.png
Solution :
NCERT Solutions class 12 /2.png
Question15. NCERT Solutions class 12 /9.png
Solution :
NCERT Solutions class 12 /9.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths Integrals/91.png
Question16. NCERT Solutions class 12 Maths /02.png
Solution :
NCERT Solutions class 12 Maths /03.png

Equating the coefficients of x and constant term, we obtain

NCERT Solutions class 12 Maths /04.png
Question17. NCERT Solutions class 12 Maths /24.png
Solution :
NCERT Solutions class 12 Maths /24.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths /25.png

Question18. NCERT Solutions class 12 Maths /30.png
Solution :
NCERT Solutions class 12 Maths /25.png

By second fundamental theorem of calculus, we obtain

I = F(π) – F(0)

 = sin π – sin 0

 = 0
Question19. NCERT Solutions class 12 Maths /39.png
Solution :
NCERT Solutions class 12 Maths /39.png

By second fundamental theorem of calculus, we obtain
NCERT Solutions class 12 Maths /40.png
Question20. NCERT Solutions class 12 Maths /47.png
Solution :
NCERT Solutions class 12 Maths /48.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths /49.png

Choose the correct answer in Exercises 21 and 22.
Question21. equals:
(A) π/3
(B) 2π/3
(C) π/6
(D) π/12
Solution :
NCERT Solutions class 12 Maths /56.png
Therefore, option (D) is correct.
Question22. equals:
(A) π/6
(B) π/12
(C) π/24
(D) π/4
Solution :
NCERT Solutions class 12 Maths /64.png

By second fundamental theorem of calculus, we obtain

NCERT Solutions class 12 Maths /66.png

Therefore, option (C) is correct.

Miscellaneous Exercise

Solve The Following Questions.

Integrate the function in Exercises 1 to 11.
Question1.NCERT Solutions class 12 Maths Integrals/01.png
Solution :
NCERT Solutions class 12 Maths Integrals/02.png
Question2. NCERT Solutions class 12 Maths Integrals/22.png
Solution :
NCERT Solutions class 12 Maths Integrals/23.png
Question3. NCERT Solutions class 12 Maths Integrals/32.png
Solution :

NCERT Solutions class 12 Maths Integrals/33.png

Takingθas first function and sec2θ as second function and integrating by parts, we obtain

NCERT Solutions class 12 Maths Integrals/34.png
Question4. NCERT Solutions class 12 Maths Integrals/32.png
Solution :
NCERT Solutions class 12 Maths Integrals/44.png
Question5. NCERT Solutions class 12 Maths Integrals/43.png
Solution :
NCERT Solutions class 12 Maths Integrals/55.png
Question6. NCERT Solutions class 12 Maths Integrals
Solution :
NCERT Solutions class 12 Maths Integrals/70.png

NCERT Solutions class 12 Maths Integrals/71.png
Question7. NCERT Solutions class 12 Maths Integrals/81.png
Solution :
NCERT Solutions class 12 Maths Integrals/82.png
Question8. NCERT Solutions class 12 Maths Integrals/91.png
Solution :
NCERT Solutions class 12 Maths Integrals/92.png
Question9. NCERT Solutions class 12 Maths Integrals/98.png

(A) 6

(B) 0

(C) 3

(D) 4
Solution :
NCERT Solutions class 12 Maths Integrals/99.png

Let cotθ = t ⇒ −cosec2θ dθdt
NCERT Solutions class 12 Maths /00.png
Question10. NCERT Solutions class 12 Maths /06.png

A. cos x + x sin x

B. x sin x

C. x cos x

D. sin x cos x


Solution :
Let I = NCERT Solutions class 12 Maths /07.png
chapter 7-Integrals  Miscellaneous Exercise

Question11. NCERT Solutions class 12 Maths /16.png
Solution :
chapter 7-Integrals  Miscellaneous Exercise
Integrate the function in Exercises 12 to 22.
Question12. 
Solution :
NCERT Solutions class 12 Maths /26.png

Question13. NCERT Solutions class 12 Maths /34.png
Solution :
NCERT Solutions class 12 Maths /35.png
Question14. NCERT Solutions class 12 Maths /47.png
Solution :
NCERT Solutions class 12 Maths /48.png
Question15. NCERT Solutions class 12 Maths /54.png
Solution :
Let I = NCERT Solutions class 12 Maths /54.png

It can be seen that (x + 2) ≤ 0 on [−5, −2] and (x + 2) ≥ 0 on [−2, 5].

NCERT Solutions class 12 Maths /56.png
Question16. NCERT Solutions class 12 Maths /64.png
Solution :
Let I = NCERT Solutions class 12 Maths /64.png

It can be seen that (x − 5) ≤ 0 on [2, 5] and (x − 5) ≥ 0 on [5, 8].

NCERT Solutions class 12 Maths /66.png
Question17. NCERT Solutions class 12 Maths /75.png
Solution :
NCERT Solutions class 12 Maths /76.png
Question18. NCERT Solutions class 12 Maths /90.png
Solution :
NCERT Solutions class 12 Maths /91.png
Question19. NCERT Solutions class 12 Maths Integrals/06.png
Solution :

NCERT Solutions class 12 Maths Integrals/07.png
Question20. NCERT Solutions class 12 Maths Integrals/06.png
Solution :
NCERT Solutions class 12 Maths Integrals/28.png
Question21. NCERT Solutions class 12 Maths Integrals/06.png
Solution :
Let I = NCERT Solutions class 12 Maths Integrals/06.png
As sin(−x) = (sin (−x))2 = (−sin x)2 = sin2x, therefore, sin2is an even function.

NCERT Solutions class 12 Maths Integrals/56.png
Question22. NCERT Solutions class 12 Maths Integrals/62.png
Solution :
NCERT Solutions class 12 Maths Integrals/63.png

Evaluate the integrals in Exercises 23 and 24.
Question23. NCERT Solutions class 12 Maths Integrals/77.png
Solution :
Let I = NCERT Solutions class 12 Maths Integrals/77.png
As sin(−x) = (sin (−x))7 = (−sin x)7 = −sin7x, therefore, sin2is an odd function.
NCERT Solutions class 12 Maths Integrals
Question24. NCERT Solutions class 12 Maths Integrals/95.png
Solution :
NCERT Solutions class 12 Maths Integrals/96.png


Evaluate the definite integrals in Exercise 25 to 33.
Question25. NCERT Solutions class 12 /3.png
Solution :
NCERT Solutions class 12 /4.png
Question26. NCERT Solutions class 12 Maths Integrals/image324.png
Solution :
NCERT Solutions class 12 Maths Integrals/image324.png

Adding (4) and (5), we obtain

NCERT Solutions class 12 Maths Integrals

Question27. NCERT Solutions class 12 Maths Integrals/image338.png
Solution :
NCERT Solutions class 12 Maths Integrals/image339.png
Question28. NCERT Solutions class 12 Maths Integrals/image359.png
Solution :
Let I = NCERT Solutions class 12 Maths Integrals/image359.png

It can be seen that, (x − 1) ≤ 0 when 0 ≤ x ≤ 1 and (x − 1) ≥ 0 when 1 ≤ x ≤ 4
NCERT Solutions class 12 Maths Integrals/image361.png
Question29.Show that NCERT Solutions class 12 Maths Integrals/image373.png if f and g are defined as f (x) = f(a – x) and g(x) + g(a – x) = 4
Solution :
NCERT Solutions class 12 Maths Integrals/image374.png
Question30. NCERT Solutions class 12 Maths Integrals/image383.png

A. 0

B. 2

C. π

D. 1
Solution :
NCERT Solutions class 12 Maths Integrals/image383.png

 = π
Question31. NCERT Solutions class 12 Maths Integrals/image395.png

A. 2

B. 3/4

C. 0

D. -2

Solution :
NCERT Solutions class 12 Maths Integrals/image395.png
Question32. NCERT Solutions class 12 Maths Integrals/image412.png
Solution :
NCERT Solutions class 12 Maths Integrals/image412.png

From equation (1), we obtain

NCERT Solutions class 12 Maths Integrals/image413.png
Question33. NCERT Solutions class 12 Maths Integrals/image433.png
Solution :
NCERT Solutions class 12 Maths Integrals/image434.png

Prove the following (Exercise 34 to 40).
Question34. NCERT Solutions class 12 Maths Integrals/image447.png [Hint: Put x = a/t]
Solution :
NCERT Solutions class 12 Maths Integrals/image448.png
Question35. NCERT Solutions class 12 Maths Integrals/image466.png
Solution :
Let I = NCERT Solutions class 12 Maths Integrals/image466.png

NCERT Solutions class 12 Maths Integrals/image468.png
Question36. NCERT Solutions class 12 Maths Integrals/image472.png
Solution :
NCERT Solutions class 12 Maths Integrals/image473.png
Question37. NCERT Solutions class 12 Maths Integrals/image480.png
Solution :
NCERT Solutions class 12 Maths Integrals/image481.png
Question38. NCERT Solutions class 12 Maths Integrals/image489.png
Solution :

NCERT Solutions class 12 Maths Integrals/image490.png
Question39. NCERT Solutions class 12 Maths Integrals/image512.png
Solution :
NCERT Solutions class 12 Maths Integrals/image513.png
Question 40. Evaluate as a limit of sum.
Solution :
Given: 

It is known that,

NCERT Solutions class 12 Maths Integrals/image527.png
NCERT Solutions class 12 Maths Integrals/image501.png
Question41. Choose the correct answer:is equal to:

Solution :
NCERT Solutions class 12 Maths Integrals/image536.png
Therefore, option (A) is correct.

Question42. Choose the correct answer:NCERT Solutions class 12 Maths Integrals/image549.pngis equal to:
(A) 
(B) log |sin x + cos x | + C
(C) log |sin x – cos x | + C
(D) 
Solution :
NCERT Solutions class 12 Maths Integrals/image549.png
Therefore, option (B) is correct.

Question43. Choose the correct answers If f (a + b – x) = f (x), then 


Solution :
NCERT Solutions class 12 Maths Integrals/image563.png
Therefore, option (D) is correct.
Question44. The value of is:
(A) 1
(B) 0
(C) -1
(D) π/4
Solution :
NCERT Solutions class 12 Maths Integrals/image574.png
Therefore, option (B) is correct.

Leave a Comment

Your email address will not be published. Required fields are marked *

Get 30% off your first purchase!

X
error: Content is protected !!
Scroll to Top